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Abstract

This article investigates a trading strategy that relies on private information in an electronic spot

foreign exchange market. In a structural microstructure model extended for high-frequency data,

our analysis links the informational content of trading activity to order size. We find that large

currency orders are likely to be placed by informed traders, which generally results in increased

price volatility. We further examine the reverse causality and show that trade size responds to price

volatility in a nonlinear manner: the probability of observing large trades increases with volatility,

but this probability decreases when volatility becomes relatively high. In addition, the data sug-

gest that excess kurtosis in exchange rate returns (corresponding to large price-contingent trades)

is significantly lower than that in small trades. We discuss the implications of such findings for

studying extreme events and jumps in asset prices.
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1. Introduction

Do heterogeneously informed currency traders differ in their use of information? If so, how does pri-

vate information impact their trade size? What is the relationship of trade size to foreign exchange

(FX) rate volatility? This paper seeks answers to these questions by linking the information pro-

cess to order size patterns while relying on a trading strategy designed in an electronic FX market.

Extending Easley et al. (1997b) and Easley and O’Hara (1987), our high-frequency trading setup

allows informed and uninformed traders to place orders sequentially in continuous time.1 To test

the predictions of the strategies, we derive tractable likelihood functions that identify the variation

in trade size associated with the orders of informed and uninformed FX traders.

Based on a retail electronic trading platform data set, our empirical analysis reveals several

notable findings. First, we empirically show that large orders are likely to be executed by informed

traders rather than uninformed traders. This evidence is particularly pronounced for buy orders

and remains strong regardless of the choice of size thresholds. These results highlight the impor-

tance of the information content of trade size (i.e., informativeness) in characterizing currency

transaction data. More broadly, a direct implication of this analysis is that order flow size could

be informative by itself even in the absence of information shocks.2 Second, an estimated logit

model suggests that large trade size appears to be an endogenous factor that depends (nonlinearly)

on price volatility. This finding supports the intraday trading invariance principle proposed by

Andersen et al. (2015). Third, when we reverse the causality direction in the logit model, we also

reveal that large trades result in a statistically significant increase in price volatility. This effect,

however, is not as pronounced as the impacts of volatility on large trades, which is sensible for an

FX retail trading platform. Finally, we assess the distributional characteristics of price increments

1While informed traders utilize information surprises as principal motivation for their trading, uninformed traders
consider non-news factors, such as liquidity or trade-driven shocks. See also Osler and Savaser (2011) and Osler (2005),
who empirically show that extreme FX price movements could result from stop-loss orders even in the absence of any
macroeconomic news announcements.

2Prior research on currency markets has focused on the link between expectations and shocks hitting currency
markets (Evans, 2002; Evans and Lyons, 2002a). While information-driven shocks change expectations and often
increase market volatility (see, e.g., Jiang et al., 2011; Ederington and Lee, 1995, 1993), price-contingent trading could
also trigger large FX market swings even in the absence of any news arrivals (Osler, 2005; Osler and Savaser, 2011).
Non-information shocks may include, for instance, liquidity (or trading-based) shocks (Caballero and Krishnamurthy,
2008), real shocks (i.e., innovations of preferences as in Allen and Gale, 2000) and structural shocks (see, e.g., Dungey
et al., 2010).
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and show that excess kurtosis in exchange rate data, corresponding to large price-contingent trades,

is significantly lower than that in small trades. Our motivation for this assessment directly builds

on the argument of Osler and Savaser (2011) and Osler (2005), who provide evidence that price-

contingent trading could solely explain the extreme price cascades in the transactions of an FX

dealer. We emphasize that the source of extreme events could be attributed to the informativeness

of trade size: uninformed traders tend to place small orders as a range of extreme stop-loss and

take-profit trades. This may result in jump cascades or excess kurtosis observed in transaction

data. In addition to quotation bursts in equities (Gençay et al., 2016), the size and informational

content of trades could thus be additional drivers of currency jumps.

There is an extensive body of microstructure literature on the role of high-frequency trading and

information in price discovery. Recent examples of empirical studies include the works of Brogaard

et al. (2014, 2015a) and Brogaard et al. (2015b). Using NASDAQ data, Brogaard et al. (2014)

show that the direction of trading of high-frequency traders (HFTs) is linked to public information,

such as macro news announcements, and that high-frequency trading activities facilitate the price

discovery process. In the same strand, Brogaard et al. (2015a) find evidence that HFTs are liquidity

suppliers, whereas non-HFTs are liquidity demanders. Building on these two works and using

Canadian equity data instead, Brogaard et al. (2015b) reveal that price discovery is primarily

driven by limit orders of HFTs (60-80%) and is linked to public information (as in Brogaard et al.,

2015a). Considering a theoretical setup, Duffie and Zhu (2015) develop an equilibrium market

microstructure model and show that price discovery, when combined with size discovery, improves

(allocative) efficiency in markets with private information. Alternatively, Gençay et al. (2016)

examine the dynamics of the quotation process and relate the stress cycles of trading activity

to stock price swings. For Gençay et al. (2016), burst episodes in data signal the presence of

asymmetric information, while average order size tends to decline surrounding bursts in quotes. In

contrast to these studies investigating equity market microstructure, we analyze the properties of an

electronic FX trading platform. Considering the role of private information in markets, we further

characterize a trading strategy that permits us to test for the presence of private information in

this context.

Our paper is also related to studies that link heterogeneous information to trading activity and
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market structure. As a seminal paper, Kyle (1985) derives a continuous auction model and shows

that prices react gradually to the private information of informed traders. Glosten and Milgrom

(1985) characterize adverse selection between end users and dealers. The key prediction of Glosten

and Milgrom (1985) is that (equilibrium) bid-ask spreads reflect the information in trades and

that such spreads should widen when traders (i.e., end users) are informed. Interactions between

informed and liquidity stock traders have been studied from a theoretical perspective by Admati

and Pfleiderer (1988). In line with the conclusions of Kyle (1985), Admati and Pfleiderer (1988)

document that (monopolistic) informed traders can camouflage their trading activity by splitting

large trades into small trades.3 Moreover, as Glosten (1994) suggests, the frequency of trading

could also vary with the information set of investors: in equilibrium, large traders with extreme

news trade twice, whereas small traders with less extreme news trade only once.4

The above studies develop a theoretical foundation and concern the equity market, whereas

the current paper is an empirical analysis of a retail FX market. Notably, the regularities and

activity in an equity market microstructure may substantially deviate from those in an FX market

microstructure. For instance, the adverse selection paradigm in the equity literature posits that

spreads are typically wider when informed traders (end users) undertake large trades (see, e.g.,

Glosten and Milgrom, 1985, Glosten, 1989). Contrary to this dominant view in equity market

microstructure, spreads are not primarily driven by adverse selection in currencies (Osler et al.,

2011). In FX data, customer spreads are negatively related to trade size, and they are typically

tight for financial customers. In light of these results from the currency market microstructure

literature, we examine the role of heterogeneous information in explaining trade size variation. We

conduct an empirical exercise that relies on a trading model for heterogeneously informed investors

who can submit large or small orders depending on their access to news arrivals.

A parallel yet separate strand of research investigates the interactions among trade size, volatil-

ity and market impact (see, e.g., Madhavan and Smidt, 1991, Kalok and Fong, 2000 and Andersen

3The price impact of trade could be either linear (see, e.g., Kyle, 1985) or nonlinear (see, e.g., Dufour and Engle,
2000, Zhang et al., 2001 and Hautsch and Huang, 2012). In this context, Banerjee and Green (2015) further show
that if investors do not know whether others are informed or noise traders, then the reaction of asset prices to news
becomes nonlinear.

4See, e.g., Baruch and Glosten (2013), who show that equilibria exist in a market with noise and informed traders.
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et al., 2015). Our analysis is linked to this extant literature in several ways. For instance, Madha-

van and Smidt (1991) theoretically show that trade size is crucial because it carries information by

influencing the spread. Examining NYSE/NASDAQ-listed stocks, Kalok and Fong (2000) further

analyze how trade size (as an exogenous factor) impacts price volatility. The main empirical find-

ings in Kalok and Fong (2000) suggest that volatility increases (decreases) with small to medium

(medium to large) changes in size, and hence, the relationship could be nonlinear rather than lin-

ear. In contrast to Kalok and Fong (2000), we consider trade size as an endogenous variable. The

underlying intuition behind our consideration is relatively straightforward: if large orders belong to

traders with private information, then it is natural to expect that informed traders monitor market

conditions and adjust orders in response to time-varying volatility or uncertainty. Kalok and Fong

(2000) consider absolute daily stock returns as a volatility proxy, while we use absolute intraday

currency returns (i.e., instantaneous price volatility). In this vein, Andersen et al. (2015) empirically

show that trade size in the S&P 500 futures market declines as price volatility (per transaction)

rises, consistent with the intraday trading invariance principle. We test this hypothesis in our study

with FX data and find supporting evidence.

In the context of currency trading, our paper particularly extends and complements the FX

market microstructure literature. In contrast to Easley et al. (1997a), who develop a stock market

model and show that large buy-sell orders carry almost equal information content, our analysis

reveals that informed buy orders in a retail FX market convey more information than uninformed

buy orders. Our findings also complement Menkhoff and Schmeling (2010), as we examine a

trading strategy that explains the trading behavior and market regularities observed in that paper.

Chakravarty (2001) and Anand and Chakravarty (2007) link price discovery to trade size in stock

and option markets, respectively. Our results support the conclusions of these studies: medium-

sized trades have the most significant information content in currencies, similar to stocks and

options.5 As King et al. (2013) argue, private information has significant power to amplify short-

5See also Goodhart and Payne (1996), who study the interactions among quote revision, spreads and transactions:
trades drive spreads and quote revisions. Furthermore, that information could be contagious, and the order flow of
major FX rates could determine the returns on other exchange rates (Evans and Lyons, 2002b). Exploring the role
of order flow, Menkhoff and Schmeling (2008) show that the price impact of currency order flow depends on regions,
which in turn supports the local information hypothesis.

5



term currency fluctuations. Consistent with this view, we empirically show that private information

leads to the execution of large orders that potentially create price impacts.

The remainder of the paper is organized as follows. Section 2 introduces the model and outlines

the trading environment. Section 3 describes our data. In Section 4, we present and discuss the

empirical results. Section 5 concludes the paper.

2. The Model

The model consists of informed and uninformed traders and a risk-neutral competitive market

maker. The traded asset is a foreign currency for the domestic currency. Similar to the portfolio

shifts model (Evans and Lyons, 2002a), the trades and the governing price process are generated by

the quotes of the market maker over a 24-hour trading day. Within any trading hour, the market

maker is expected to buy and sell currencies from his posted bid and ask prices.6 The price process

is the expected value of the currency based on the market maker’s information set at the time of

the trade.

2.1. Arrivals of news, traders and orders

The hourly arrival of news occurs with the probability α. This represents bad news with

probability δ and good news with 1 − δ probability. We define the price process as follows.

Definition 1. Let {pi} be the hourly price process over i = 1, 2, . . . , 24 hours. pi is assumed to be

correlated across hours and will reveal the intraday time dependence and intraday persistence of the

price behavior across these two classes of traders.

The lower and upper bounds for the price process should satisfy pb
i < pn

i < pg
i , where pb

i , pn
i

and pg
i are the prices conditional on bad news, no news and good news, respectively. Within each

hour, time is continuous and indexed by t ∈ [0, T ]. In any trading hour, the arrivals of informed

and uninformed traders are determined by independent Poisson processes. At each instant within

an hour, uninformed buyers and sellers each arrive at a rate of ε. Informed traders trade only when

there is news, arriving at a rate of µ.

6For ease of notation and exposition, we present our model based on hourly time scales. The predictions of the
trading strategy remain the same at higher frequencies, such as 5 minutes or 10 minutes.
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We also assume that all informed traders are risk neutral and competitive, and we therefore

expect them to maximize profits by buying when there is good news and selling otherwise. For

good news hours, the arrival rates are ε + µ for buy orders and ε for sell orders. For bad news

hours, the arrival rates are ε for buy orders and ε+µ for sell orders. When no news exists, the buy

and sell orders arrive at a rate of ε per hour.

2.2. The market maker and measuring the likelihood of orders

The market maker is assumed to be Bayesian, using the arrival of trades and their intensity to

determine whether a particular trading hour belongs in the category of no news, good news or bad

news. Because the arrival of hourly news is assumed to be independent, the market maker’s hourly

decisions are analyzed independently from one hour to the next.

Definition 2. Let P (t) = (Pn(t), Pb(t), Pg(t)) be the market maker’s prior beliefs with no news,

bad news, and good news at time t. Accordingly, the prior beliefs before trading starts each day are

P (0) = (1 − α, αδ, α(1− δ)).

Given the definition above, let St and Bt further denote sell and buy orders at time t. The

market maker updates the prior conditional on the arrival of an order of the relevant type. Let

P (t|St) be the market maker’s updated belief conditional on a sell order arriving at t. Pn(t|St)

is the market maker’s belief about no news conditional on a sell order arriving at t. Similarly,

Pb(t|St) is the market maker’s belief about the occurrence of bad news events conditional on a sell

order arriving at t, and Pg(t|St) is the market maker’s belief about the occurrence of good news

conditional on a sell order arriving at t. The probability that any trade occurs at time t (based on

information) is then

i(t) =
µ(1 − Pn(t))

2ε + µ(1 − Pn(t))
. (1)

Because each buy and sell order follows a Poisson process at each trading hour and orders are

independent, the likelihood of observing a sequence of orders containing B buys and S sells in a

bad news hour of total time T is given by

Lb((B, S)|θ) = Lb(B|θ)Lb(S|θ) = e−(µ+2ε)T εB(µ + ε)STB+S

B!S!
, (2)
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where θ = (α, δ, ε, µ). Similarly, in a no-event hour, the likelihood of observing any sequence of

orders that contains B buys and S sells is

Ln((B, S)|θ) = Ln(B|θ)Ln(S|θ) = e−2εT εB+STB+S

B!S!
, (3)

and in a good-event hour, this likelihood becomes

Lg((B, S)|θ) = Lg(B|θ)Lg(S|θ) = e−(µ+2ε)T εS(µ + ε)BTB+S

B!S!
. (4)

Notably, the likelihood of observing B buys and S sells in an hour of unknown type is the

weighted average of equations (2), (3), and (4) using the probabilities of each type of hour occurring.

That is,

L((B, S)|θ) = (1− α)Ln((B, S)|θ) + αδLb((B, S)|θ) + α(1 − δ)Lg((B, S)|θ)

= (1− α)e−2εT εB+STB+S

B!S!
+ αδe−(µ+2ε)T εB(µ + ε)STB+S

B!S!

+α(1 − δ)e−(µ+2ε)T εS(µ + ε)BTB+S

B!S!
. (5)

Because hours are independent, the likelihood of observing the data M = (Bi, Si)
I
i=1 over

twenty-four hours (I = 24) is the product of the hourly likelihoods, such that

L(M |θ) =

I
∏

i=1

L(θ|Bi, Si) =

I
∏

i=1

e−2εT TBi+Si

Bi!Si!
× (6)

[

(1 − α)εBi+Si + αδe−µT εBi(µ + ε)Si + α(1 − δ)e−µT εSi(µ + ε)Bi
]

,
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and the log likelihood function is

`(M |θ) =

I
∑

i=1

`(θ|Bi, Si)

=

I
∑

i=1

[−2εT + (Bi + Si) lnT ]

+
I

∑

i=1

ln
[

(1 − α)εBi+Si + αδe−µT εBi(µ + ε)Si + α(1 − δ)e−µT εSi(µ + ε)Bi
]

−

I
∑

i=1

(lnBi! + ln Si!). (7)

As in Easley et al. (2008), the log likelihood function, after dropping the constant and rear-

ranging7, is given by

`(M |θ) =

I
∑

i=1

[−2ε + Mi ln x + (Bi + Si) ln(µ + ε)] (8)

+
I

∑

i=1

ln
[

α(1 − δ)e−µxSi−Mi + αδe−µxBi−Mi + (1 + α)xBi+Si−Mi
]

,

where Mi ≡ min(Bi, Si) + max(Bi, Si)/2, and x = ε
ε+µ ∈ [0, 1].

2.3. Heterogeneous information and orders with different sizes

Given the (buy-sell) likelihoods presented in the previous section, we now utilize a procedure

similar to Easley et al. (1997b), theoretically outlined in Easley and O’Hara (1987). This approach

allows informed and uninformed traders to place both large and small orders. The extended model

relies on the number of unique large buy (LB), small buy (SB), large sell (LS) and small sell

(SS) trades that represent the set of possible trade outcomes.8 This approach introduces two

new parameters: φ (the probability that an uninformed trader trades a large amount) and ω

(the probability that an informed trader trades a large amount). Naturally, (1 − φ) denotes the

7To derive equation (8), the term ln[xMi(µ + ε)Bi+Si ] is simultaneously added to the first sum and subtracted
from the second sum in equation (7). This approach increases computational efficiency and ensures convergence in
the presence of a large number of buys and sells.

8For simplicity, the no-trade outcome considered in Easley et al. (1997b) for a much smaller dataset of stock prices
is ignored.
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probability of a small uninformed trade, and (1 − ω) is the probability of a small informed trade.

All other parameters (α, µ, δ and ε) follow the previous notation. The likelihood of observing a

sequence of orders with LB large buys, SB small buys, LS large sells and SS small sells in a bad

news hour is

Lb((LB, LS, SB, SS)|θ) = Lb(LB|θ)Lb(LS|θ)Lb(SB|θ)Lb(SS|θ)

= e−(µ+2ε)T (εφ)LB [ε(1− φ)]SB(εφ + µω)LS[ε(1 − φ) + µ(1− ω)]SSTLB+LS+SB+SS

LB!LS!SB!SS!
,

where θ = (α, δ, ε, µ, ω, φ). On a no-event day, the likelihood of observing a sequence of LB large

buys, SB small buys, LS large sells and SS small sells is

Ln((LB, LS, SB, SS)|θ) = Ln(LB|θ)Ln(LS|θ)Ln(SB|θ)Ln(SS|θ)

= e−2εT φLB+LS(1− φ)SB+SS(εT )LB+LS+SB+SS

LB!LS!SB!SS!
.

On a good-event day, the likelihood is

Lg((LB, LS, SB, SS)|θ) = Lg(LB|θ)Lg(LS|θ)Lg(SB|θ)Lg(SS|θ)

= e−(µ+2ε)T (εφ)LS[ε(1 − φ)]SS(εφ + µω)LB[ε(1− φ) + µ(1 − ω)]SBTLB+LS+SB+SS

LB!LS!SB!SS!
.

As before, the likelihood of observing LB large buys, SB small buys, LS large sells and SS small

sells is the weighted average of the above equations:

L((LB, LS, SB, SS)|θ) = (1 − α)Ln(.|θ) + αδLb(.|θ) + α(1 − δ)Lg(.|θ)

Because this work uses hourly data, the likelihood of observing the data D = (LBi, LSi, SBi, SSi)
I
i=1

over twenty-four hours (I = 24) is the product of the hourly likelihoods. That is,

L(D|θ) =

I
∏

i=1

L(θ|LBi, LSi, SBi, SSi),
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and the log likelihood function is now

`(D|θ) =

I
∑

i=1

`(θ|LBi, LSi, SBi, SSi)

=

I
∑

i=1

[−2ε + Mi lnx + Ni ln y]

+
I

∑

i=1

[(LBi + LSi) ln(εφ + µω) + (SBi + SSi) ln(ε(1 − φ) + µ(1 − ω))]

+

I
∑

i=1

ln[(1− α)xLBi+LSi−MiySBi+SSi−Ni + αδe−µxLBi−MiySBi−Ni

+α(1 − δ)e−µxLSi−MiySSi−Ni ],

where Mi ≡ min(LBi, LSi) + max(LBi, LSi)/2, Ni ≡ min(SBi, SSi) + max(SBi, SSi)/2, y =

ε(1−φ)
ε(1−φ)+µ(1−ω) ∈ [0, 1] and x = εφ

εφ+µω
∈ [0, 1]. Here, to obtain the final expression, the terms

ln[xMi(µω + εφ)LBi+LSi ] and ln[yNi(µ(1−ω) + ε(1−φ))SBi+SSi ] are added to and subtracted from

the right-hand side of the likelihood equation. Before proceeding with the estimations, we first

describe our trading database.

3. Data

In the early 1990s, the practice of switching from voice brokers to electronic trading systems

rendered the FX market more transparent. However, early over-the-counter (OTC) FX market

participants had no means of observing the market-wide order flow. The introduction of centralized

electronic broking systems such as Reuters and EBS thus provided a new platform for research on

the FX market microstructure. Although Reuters and EBS are dominant in electronic FX markets,

they do not publicly report high-frequency volume data or trader identities.

The dataset from the OANDA FXTrade internet trading platform consists of tick-by-tick foreign

exchange transaction prices and the corresponding volumes for several exchange rates from October

1, 2003, to May 14, 2004. The number of active traders during this period is 4,983, and they mainly

trade four major exchange rates.9 The data show that the overall trading frequency increases from

9By “active”, the paper refers to traders that did not simply receive interest on their positions but placed orders
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Monday to Wednesday (the peak) and falls from Thursday to Saturday. Using the trader’s identity

(trader ID), we find that approximately 33% of the investors specialize in exactly one currency

pair, approximately 11% specialize in two currency pairs, and approximately 9% specialize in three

currency pairs. This decreasing trend leads to only 2-4% of active traders who deal in 10 to 13

currency pairs. Hence, traders appear to specialize in a small number of currency pairs, in line

with OANDA FXTrade’s intention to attract small investors.

[ Insert Figure 1 here ]

Because the bulk of all transactions (approximately 40 percent10) involve only U.S. Dollar-

Euro (USD-EUR) trading, the focus is on transactions involving only USD-EUR. In particular, the

research analyzes all USD-EUR buy and sell transactions (market, limit order executed, margin call

executed, stop-loss, and take-profit transactions). In addition to price and volume, the trader ID

for each transaction is known, and it ranges from 123 to 5904. The average number of USD-EUR

transactions per trader is 512. One can observe that a few traders transact very frequently in this

currency pair (between 10,000 and 25,000 times) over the time period of the data (Figure 1). The

day-of-the-week trading patterns for the USD-EUR transactions (trading frequency and volume)

are similar to those of other currency pairs.

[ Insert Table 1 here ]

Table 1 summarizes the institutional characteristics of the OANDA FXTrade trading platform.

This platform is an electronic market making system (i.e., a market maker) that executes orders

using bid/ask prices that are realistic and prevalent in the marketplace. The prices are determined

by their private limit order book or by the analysis of prices from the Interbank market. The

OANDA FXTrade policy is to offer the tightest possible bid/ask spread (e.g., 0.0009% spread on

the USD-EUR, regardless of transaction size). These traders, similar to most market makers, profit

from the spreads. Some of the other market features include continuous, second-by-second interest

during this period. The market share of these traders is approximately 86.4%.
10The next most active currency pairs are USD-CHF (7.88% share), GBP-USD (7.81% share), USD-JPY (6.42%

share), and AUD-USD (5.98% share).
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rate payments, no limit on the transaction size, no requirement for minimum initial deposit, no

charges for stop or limit orders, free quantitative research tools, and margin trading (maximum

leverage of 50:1). Given these market characteristics, the OANDA FXTrade seems to be designed

to attract small, uninformed traders. However, given the findings in Gençay et al. (2015), it is

reasonable to assume that informed traders are also present in this market.

The theoretical model by Easley et al. (2008) is developed in the context of equity markets.

Adapting it to the FX market requires care. As opposed to the equity market, the FX market is

open 24 hours and is decentralized. Further, unlike the NYSE, the FX market does not involve a

so-called specialist responsible for maintaining fairness and order, with insight into the limit order

book. While the NYSE has recently introduced an open limit order book that provides a real-time

view of the limit order book for all NYSE-traded securities, the FX market exhibits a low level

of transparency. Finally, trading in the FX market is motivated by speculation, arbitrage and,

importantly, inventory management of currencies. Dealers in the FX market are generally quick to

eliminate inventory positions (from below five minutes to half an hour). This process is sometimes

referred to as “hot-potato trading” (Evans and Lyons, 2002a; Bjønnes and Rime, 2005). On the

NYSE, however, inventory has an average half-life of more than a week (Madhavan and Smidt,

1993). Thus, inventory management is an important component of intraday FX trader activity.

Given its features, the OANDA FXTrade can be viewed as a “special case” of the FX market

that can be approached using the model by Easley et al. (2008). First, as a market maker, the

OANDA FXTrade promotes transparency: spreads are clearly visible, past spreads are published

for public view, and current open orders on major pairs are visible to all market participants.

With regard to trader behavior, as the only focus is on the informational aspect (i.e., informed vs.

uninformed), market participants in the FX market can be treated in a fashion similar to those in

equity markets.

The preliminary analysis (unreported for the sake of brevity) indicates that overall market

activity was extremely low on certain days or during certain weeks. Therefore, the weekends are

eliminated, starting from every Friday 15:59:59 to Sunday 15:59:59 (all times are EST), including

Christmas week (December 22-26), the first week of the year (December 29-January 2), and the

week of Independence Day (April 5-9). This leaves 145 24-hour periods. To avoid extremely
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high-frequency noise and no-activity periods in small time windows, we aggregate the data over

one-hour intervals. Aggregating over trading intervals smaller than one hour is not feasible, as this

would not cover a sufficient number of buy and sell transactions for the model to be empirically

applicable. By contrast, longer trading intervals would “stretch” the assumptions of the model to

a certain extent. For example, the news is assumed to arrive hourly (with probability α). The flow

of information is unlikely to be less frequent, i.e., over longer time intervals. The final sample size

is 3,480 hourly data points covering 145 business days from October 5, 2003, 16:00 EST, to May 14,

2004, 16:00 EST. There are 667,030 sell and 666,133 buy transactions in the sample period, with

an average of approximately 6 transactions (3 buy and 3 sell) per minute. The transaction volume

totals 32.6 billion USD-EUR contracts. According to the BIS Triennial Survey for 2004, the daily

average turnover in the USD-EUR currency pair was 501 billion USD. Hence, on average, the data

represent approximately 0.045% of the global daily USD-EUR trading volume. Nevertheless, it is

one of the largest tick-by-tick FX datasets to be used in an academic study.

Because the trader’s identity is known in each transaction, one is able to identify the number

of unique traders in each one-hour window. For estimation purposes, the number of buy arrivals

in each hour (B′

t) is defined as the number of unique traders involved in buy transactions in that

hour. The number of sell arrivals in each hour (S ′

t) is defined similarly. Therefore, the arrival of

an individual trader who conducts several buy (sell) transactions in a given hour is counted as one

buy (sell) arrival in that hour.

4. Empirical results

To present the empirical results, we proceed as follows. First, we compare the estimated ω

and φ over 145 days in our sample. If ω > φ, then trade size conveys additional information to

market participants. If, however, ω < φ, then one can conclude that traders (either informed or

uninformed) do not significantly benefit from trade size. Following that, our second objective is to

examine how changes in the cutoff trade size impact the estimates. Third, we investigate whether

trade size responds to price volatility or vice versa. Finally, we link trade size to the empirical

properties of exchange rate data and particularly assess the implications for excess kurtosis.
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4.1. Testing for the impact of trade size

The procedure of testing for trade size effects involves comparing estimates of the restricted

(ω = φ) and unrestricted (ω 6= φ) models. The cutoff amount that differentiates large from small

trades is initially set to 5,000, and it is subsequently shown that this does not affect the main

results.11

[ Insert Table 2 here ]

Table 2 lists the average estimates of αi, δi, εi, µi, ωi, and φi (i = 1, . . . , 145). The paired t-test

of the equality of the means of the constrained and unconstrained models shows no significant

difference for the first four parameters.12 However, the difference between the two sets of estimates

of ωi is statistically significant.13 Furthermore, including trade size effects (unconstrained model)

significantly increases the absolute value of the log likelihood function, thus indicating that the

constraint is binding. The informativeness of trade size is also confirmed by the unpaired t-test of

the equality of ω̄ and φ̄ for the unconstrained model. The model concludes that ω̄ is significantly

greater than φ̄. On approximately 68% of the days in the sample, ωi > φi, and the difference in the

probabilities (ωi − φi) ranges from -0.12 to 0.14 (i = 1, . . . , 145). Although there are 47 days when

the probability of uninformed large trading exceeds the probability of informed large trading, this

is not the typical case.

[ Insert Table 3 here ]

We now investigate whether the findings above are robust to the choice of the cutoff amount

for a “large” trade. Table 3 reports the results for cutoff rates of 2000, 8000 and 12000. The focus

is on the difference column from Table 2 and the mean values of the unconstrained estimates.

The results indicate that in the cutoff range between 3000 and 8000, all estimates are stable, and

the informed large trade size is more informative than the uninformed large trade size. The choice

11Trade size is expressed in currency units of the base currency, i.e., the Euro.
12The null hypothesis for this test is that the mean difference (d̄) between the paired observations (constrained

and unconstrained) of estimated parameters is zero. The test statistic is calculated as t = d̄√
s

d̄
/145

, where sd̄ is the

sample standard deviation for d̄.
13Additionally, the standard errors of ω̂i and φ̂i for the unconstrained model are consistently on the order of 10−4

and 10−5, respectively, thus indicating statistically significant differences in the probabilities.
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of cutoff values above 8000 (e.g., 12000 in Table 3) distorts the results due to the low frequency of

such large trades. Similarly, it is unreasonable to consider trades above small cutoff values (e.g.,

2000 in Table 3) to be “large,” in which case the observed effects diminish. These findings confirm

the work of Chakravarty (2001) and Anand and Chakravarty (2007), who find that medium-sized

trades are the most informative. This finding can also be interpreted as a “separating equilibrium”

outcome in which informed traders submit mainly large orders (Easley and O’Hara, 1987).14 An

interesting observation emerges from Table 3: the probability of both informed and uninformed

large trading declines with the cutoff value. This result can be explained by the fact that increasing

the cutoff value eliminates the majority of the transactions that qualify as “large” trades.

4.2. Does trade size respond to price volatility?

The previous section provides evidence that large trades are likely to be placed by informed

traders in the marketplace. Given this finding, it is natural to investigate whether trade size reacts

to market conditions or uncertainty. To assess the relationship between trade size and volatility,

Kalok and Fong (2000), for instance, consider trade size to be a control variable contributing rather

than responding to volatility. In the empirical framework of Kalok and Fong (2000), treating size

as a predictor is undoubtedly plausible because their objective is to explain how trade size affects

the volatility-volume relationship in the equity market (NASDAQ and NYSE).

Nevertheless, our approach differs from Kalok and Fong (2000) in two important respects. First,

we focus on the FX market microstructure, and thus, the volatility-trade size relationship could

be different here. Second, we are primarily interested in characterizing the properties of (large)

trade size and analyzing its reaction to price volatility, although the reverse causality will be tested

in the following subsection. Our (a priori) expectation is that if informed traders appear to place

large orders, consistent with the evidence, then investors may strategically adjust their trade sizes

during market stress or excess volatility.15

[ Insert Table 4 here ]

14Suppose that the constrained model is found to be more appropriate. This would indicate a “pooling equilibrium,”
where informed traders submit both large and small orders roughly equally.

15In our view, this intuition is also in line with the intraday trade invariance argument of Andersen et al. (2015),
who empirically show that trade size increases with price volatility in the E-mini S&P 500 futures market.
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To test how volatility impacts trade size, we estimate a standard logit model that links large

sizes (binary dependent variable) to intraday absolute log-price changes (predictor) as a proxy for

spot volatility. For our binary variable, we choose two categories such that

yi =











1 if trade size > 5000 (cutoff),

0 otherwise.

Based on these choices, our interest lies in modeling the probabilities of observing a large trade

(exceeding 5000), that is, pi = Pr{yi = 1}. To accomplish this objective for both buy and sell sides,

we consider four transaction types for closing prices: [1] market buy side, [2] market sell side, [3]

limit order buy side (executed), and [4] limit order sell side (executed).

Table 4 reports the estimation results of the baseline logit model with the trade size cutoff

5000. The table indicates that price volatility significantly increases the probability of observing

large trades in the market transaction data (models [1] and [2]). The estimated parameters (i.e.,

log-odds) for variable V OL is statistically significant, and its impact is the largest (15.98) for

market buy-side transactions (model [1]) compared with other parameter estimates, e.g., in [2] and

[4] (7.96 and 2.90, respectively).16

The third and fourth columns of Table 4 further show that the reaction of trade size to volatility

is asymmetric across the buy and sell sides of executed limit orders (i.e., models [3] and [4], respec-

tively). For instance, while volatility tends to lower the likelihood of observing large trades on the

buy side (with log-odds of -4.89), trade size increases with price volatility in sell-side limit orders

(log-odds of 2.90). The estimates are economically significant, suggesting potential differences in

traders’ risk aversion (upside or downside) based on market conditions.

Moreover, we provide the estimates of quadratic price volatility (SQV OL) for all four specifi-

cations (the third row of Table 4). On both the market buy and sell sides (models [1] and [2]), the

sign of the volatility impact becomes significantly negative (at the 1% level), and the likelihood of

16Notably, the interpretation of parameter estimates (log-odds) in binary choice models differs from that in standard
linear regression modeling. Nevertheless, one can calculate the exponential of the estimates as (ex/(1 + ex)), which
transfers the estimate to the corresponding empirical (success) likelihood. For the sake of brevity, we report only the
parameter estimates.
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large trade arrivals decreases with SQV OL. One potential reason for this evidence could be related

to order-splitting activity: while volatility (V OL) results in large trade execution, a high degree of

market uncertainty (SQV OL) might cause informed traders to split their large orders into small

units. These results, however, do not hold when transactions are (executed) buy-side limit orders

(model [3]) for which the SQV OL estimate has a positive sign (4.05).

[ Insert Table 5 here ]

We now turn to examine the sensitivity of our logit results to the choice of trade size cutoffs.

Table 5 reports the estimates for cutoff rates of 2000, 8000 and 12000. Panels A to C in the table

suggest that our main results remain qualitatively similar irrespective of the trade size thresholds.

For instance, as in our baseline findings (reported in Table 4), the largest (log-odds) impact comes

from the market buy side (model [1]) across all three cutoff choices. The probability of large trades

increases with volatility, yet the impact diminishes with high volatility levels (SQV OL). Another

noticeable feature is that the parameter estimate of V OL (SQV OL) has a positive (negative)

sign when the cutoff level is 12000 (model [3] in Panel C). This result may suggest that the limit

order is more sensitive to market conditions (and hence volatility) relative to the results for market

transactions (i.e., models [1] and [2]).

4.3. Reverse direction: does price volatility respond to trade size?

Given the evidence that large trades vary with volatility, one can also argue whether the

volatility-size relationship is bidirectional. This assessment can be motivated by the fact that

large trades are informative and that price volatility may thus reflect information embedded in

trades. To test for this reverse hypothesis, we now consider price volatility as a response variable

and trade size as a predictor in our logit regressions. We choose various high volatility thresholds

(k) that rely on a certain number of standard deviations (e.g., k = 1, 3, 6, 9) from the mean volatility

estimate over the sample.17

17Notably, this truncation approach is relatively ad hoc. In our analysis, we are solely interested in identifying
excessive (or abnormal) volatility compared to normal (mean/median) levels. Despite its apparent simplicity, this
approach is still broadly in line with the techniques implemented in the jump literature (see, e.g., Aı̈t-Sahalia and
Jacod, 2012, 2010 and Aı̈t-Sahalia, 2004). In these studies, α typically represents the size of the log return observed
in terms of the number of standard deviations from the mean (see Aı̈t-Sahalia, 2004) or from the Brownian (diffusion)
part of prices—linked to long-term volatility (see, e.g., Aı̈t-Sahalia and Jacod, 2012, 2010).
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[ Insert Table 6 here ]

Table 6 reports the estimation results for five different choices of truncation levels (from [1]

to [5] in the top row). The estimates indicate a positive relationship between trade size and the

volatility of market transaction prices (third row). The degree of impact appears to be significant

for episodes of high volatility (i.e., between [1] and [3]), but the evidence seems to be relatively

weak when volatility reaches extreme levels ([4] and [5]). For example, if we measure abnormal

volatility as nine standard deviations away from the mean (i.e., by setting k = 9), then order size

fails to influence volatility patterns (model [5]).18 These reverse-causality findings remain robust

to various subsample selections.19

4.4. Trade size, price-contingent orders and excess kurtosis

We complete our analysis by examining the link between trade size and empirical characteris-

tics of exchange rate data. This is motivated by Osler and Savaser (2011) and Osler (2005), whose

evidence indicates that price-contingent trading helps explain the excess kurtosis in currency re-

turns. In the same vein, we thus assess how trade size is associated with excess kurtosis. For this

objective, we first split our sample into large and small orders with the cutoff level of 5000. As in

Osler and Savaser (2011) and Osler (2005), we then consider the log-price changes (i.e., exchange

rate returns) corresponding to stop-loss and take-profit trades in each subsample.

[ Insert Table 7 here ]

Table 7 reports the sample moments computed on the log-price differences of price-contingent

trades. The table indicates that excess kurtosis in large trade samples (Panel A) is significantly

smaller than that in small trade samples (Panel B). This pattern is particularly noticeable with

take-profit transactions (Panel B). For example, the excess kurtosis of ∆TPS (∆TPB) is around

228 (332) in small orders, whereas the estimate decreases to 50-60 in large order samples (Panel

A). Relying on our main empirical results, we can explain these features in two ways. First, as we

18One explanation for this finding could be linked to the nature of the trading environment. Our database (OANDA)
is a retail trading platform, and hence, while informed traders adjust their orders depending on market volatility, the
reverse may not necessarily hold. The impact of retail trading per se on the entire FX trade is limited in practice.

19These additional robustness tests are unreported for the sake of brevity, but they are available upon request.
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show that small orders are typically placed by uninformed traders, they might take a wide range

of aggressive positions that increase the likelihood of extreme events. Second, large orders from

informed traders tend to be more concentrated and less intrusive because these traders use their

private information to place consistent large orders that are rarely extreme.

5. Conclusions

This paper provides evidence that the transactions of informed FX traders are related to larger

trade sizes. These findings are robust with regard to reasonable choices for cutoff points that define

a “large” trade, although some trade sizes that are found to be informative can also be interpreted as

medium-sized. Extending and complementing the extant literature, our analysis provides evidence

on the link between informed trading and larger trade sizes (e.g., Easley et al., 1997a, Menkhoff and

Schmeling, 2010, Chakravarty, 2001 and Anand and Chakravarty, 2007). The observed behavior

can be described as a strong strategic component in the activity of informed traders that is not

observed for uninformed traders (Gençay and Gradojevic, 2013). In contrast, uninformed traders

submit smaller currency orders while acting in a “dispersed manner” that increases the likelihood

of extreme events in the FX market.

Our empirical analysis further shows that large trades are associated with local price volatility

representing market uncertainty at high frequency. In the electronic foreign exchange market,

the probability of large trade arrivals increases with EUR/USD volatility but decreases when

volatility is severe; this finding suggests a nonlinear interaction between these two factors. While

this evidence indirectly supports the trading invariance principle recently outlined by Andersen

et al. (2015) for stock futures, our results contrast with Kalok and Fong (2000) regarding the

properties of the volatility-trade size relationship. Specifically, FX data suggest that trade size

depends on price volatility, and hence, from an econometric viewpoint, size may not be considered

an exogenous microstructure parameter. Moreover, reversing the direction of causality shows that

large trade sizes positively affect FX market volatility, albeit less strongly. Intuitively, informed

retail FX traders attempt to camouflage their large trades during episodes of high volatility, where

the impact of their trading on FX volatility is relatively small. These conclusions remain valid

regardless of changes in large trade sizes (e.g., from relatively medium to large trades and from
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large to extra-large trades).

Although our results generally suggest that information leads to large order execution, there

could be other potential factors affecting the trade size−information relationship. For instance,

informed currency traders may prefer to split orders and front-run large institutional traders. In

the presence of such order-splitting actions, the orders of informed traders might become smaller,

and hence, traders with large orders could be uninformed. This possibility may arise particularly

in data with jump-type price movements (Tseng et al., 2015). Building on the predictions of our

model, future research may thus shed more light on the role of order-splitting and excess volatility

in the informativeness of trade size.
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Table 1: OANDA FXTrade institutional characteristics

Variable Sample

Hours of operation 24 hours/7 days per week
Number of currency pairs 30
Number of active traders 4,983
Number of trades (USD-EUR) 667,030 sell transactions

666,133 buy transactions
Average number of trades per day (USD-EUR) 192 sell transactions

191 buy transactions
Total volume (USD-EUR) 32.6 billion USD
Average volume per day (USD-EUR) 224 million USD
Transaction types Buy/Sell market (open or close)

Limit order Buy/Sell
Cancel order (reason: bound violation, insuff. funds, none)
Change order
Change stop loss (sl) or take profit (tp)
Sell/Buy tp (close), Sell/Buy sl (close)
Buy/Sell limit order executed (open or close)
Order expired
Sell/Buy margin called (close)
Interest

Notes: The table presents the institutional characteristics of the OANDA FXTrade trading platform. OANDA FX-
Trade is an electronic market making system that executes orders using bid/ask prices that are realistic and prevalent
in the marketplace. Our sample consists of tick-by-tick foreign exchange transaction prices and the corresponding
volumes for several exchange rates from October 1, 2003 to May 14, 2004.
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Table 2: The information role of trade size

Parameter Benchmark model Constrained Unconstrained Difference (p-value)

ᾱ 0.30 0.30 0.30 0.00 (0.17)
δ̄ 0.47 0.47 0.47 0.00 (0.42)
ε̄ 77.8 77.16 77.12 0.04 (0.19)
µ̄ 83.5 82.5 82.5 0.00 (0.99)
ω̄ - 0.43 0.45 -0.02 (0.00)***
φ̄ - 0.43 0.42 0.01 (0.00)***

LLF -15111 -12087.25 -12087.46 0.21 (0.08)*

Notes: The first column lists the average estimates for the model, which do not account for the trade size. The second
and third columns represent the average estimates of the parameters in the constrained (ωi = φi) and unconstrained
(ωi 6= φi; i = 1, . . . , 145) versions of the model, respectively. The last column contains the differences in mean value
between the 145 parameters estimated from the constrained and unconstrained models. The p-value comes from the
paired t-test for the null hypothesis of the difference being equal to zero. LLF denotes the value of the log likelihood
function. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

Table 3: The robustness of the estimates with respect to “large” trade size

Parameter 2000 cutoff 8000 cutoff 12000 cutoff

ᾱ 0.31 0.00 (0.43) 0.30 0.00 (0.14) 0.30 0.00 (0.33)
δ̄ 0.48 0.00 (0.53) 0.47 0.00 (0.66) 0.47 0.02 (0.38)
ε̄ 74.43 0.02 (0.59) 78 0.00 (0.15) 77.93 0.05 (0.19)
µ̄ 74.54 0.42 (0.40) 83.11 1.34 (0.12) 82.65 0.82 (0.19)
ω̄ 0.73 -0.02 (0.00)*** 0.36 -0.01 (0.00)*** 0.24 -0.00 (0.02)**
φ̄ 0.70 0.01 (0.00)*** 0.34 0.01 (0.00)*** 0.23 0.00 (0.00)***

LLF 0.12 (0.15) 1.66 (0.09)* 0.97 (0.17)

Notes: For each cutoff amount for a “large” trade (2000, 8000 and 12000), this table presents the average parameter
estimates from an unconstrained model along with the average difference between the estimates from the two versions
of the model: constrained (ωi = φi) and unconstrained (ωi 6= φi; i = 1, . . . , 145). More precisely, each column
represents the merged columns 3 and 4 from Table 2 for different cutoff amounts. LLF denotes the average value
of difference between the log likelihood function for the two models. The p-value reported in the brackets comes
from the paired t-test for the null hypothesis of the difference being equal to zero. *, **, and *** indicate statistical
significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Table 4: Logit model estimation results for trade size: impact of price volatility

[1] [2] [3] [4]

c -0.823*** -0.754*** 1.210*** -1.022***
(0.006) (0.005) (0.028) (0.027)

V OL 15.976*** 7.962*** -4.885*** 2.898***
(0.508) (0.315) (0.516) (0.503)

SQV OL -79.689*** -7.009*** 4.046*** -2.588**
(5.911) (1.381) (1.333) (1.272)

Obs. 190195 232661 10659 10307
χ2(2) 1498.30 715.00 170.21 55.54

[0.00] [0.00] [0.00] [0.00]
LL -121018 -148503 -6090 -6153
R2 0.006 0.002 0.014 0.004

Notes: The table reports the logit model estimation results for a fixed trade size cutoff. The response variable

trade size (yi) is yi = 1 if the trade size exceeds 5000, and yi = 0 otherwise. Estimation is based on Newton’s

method. The predictors are absolute log-price changes (V OL), as proxy for intraday price volatility, and its squared

version to capture potential nonlinear effects (SQV OL). c denotes the constant. The table presents the estimated

coefficients (i.e., the log-odds) and standard errors in parenthesis. For closing prices, we consider four models with

different transaction types. [1]: Market buy-side, [2]: Market sell-side, [3]: Buy-side limit order executed, [4]: Sell-side

limit order executed. The bottom three rows in the table report the number of observations (Obs), χ2(2) with its

rejection probability (in square brackets), log-likelihood value (LL) and pseudo (McFadden’s) R2 values calculated

as 1-[LL(full)/LL(baseline)]. The sample covers the periods from October 1, 2003 to May 14, 2004. *, **, and ***

indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Table 5: Logit model estimation results for different large trade size cutoffs

Panel A. cutoff 2000 Panel B. cutoff 8000 Panel C. cutoff 12000
[1] [2] [3] [4] [1] [2] [3] [4] [1] [2] [3] [4]

c -0.209*** -0.117*** 0.568*** -0.321*** -0.982*** -0.905*** 1.289*** -1.120*** -1.460*** -1.435*** -1.976*** -1.710***
(0.006) (0.005) (0.025) (0.024) (0.007) (0.006) (0.029) (0.028) (0.008) (0.006) (0.034) (0.033)

V OL 15.410*** 8.323*** -4.297*** 2.010*** 16.217*** 7.796*** -4.605*** 2.431*** 14.511*** 6.960*** 4.084*** 2.648***
(0.464) (0.311) (0.478) (0.434) (0.528) (0.320) (0.521) (0.459) (0.583) (0.346) (0.427) (0.587)

SQV OL -63.520*** -8.342*** 3.210** -1.782*** -84.297*** -6.975*** 3.696*** -1.757** -72.655*** -4.487*** -1.816*** -2.267
(5.081) (1.396) (1.265) (1.031) (6.229) (1.365) (1.333) (1.033) (6.788) (1.243) (0.639) (1.441)

Obs. 190195 232661 10659 10307 190195 232661 10659 10307 190195 232661 10659 10307
χ2(2) 1675.90 801.26 155.69 31.11 1431.10 657.43 149.10 41.93 952.65 441.31 110.98 33.76

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
LL -130911 -160834 -7097 -7051 -116208 -142748 -5910 -5936 -97662 -117498 -4321 -4641
R2 0.006 0.002 0.011 0.002 0.006 0.002 0.012 0.004 0.005 0.002 0.013 0.004

Notes: The table reports the logit model estimation results for different large trade size cutoffs (2000 in Panel A., 8000 in Panel B., 12000 in Panel C.). The

response variable trade size (yi) is yi = 1 if the trade size exceeds the cutoff level (reported in each panel), and yi = 0 otherwise. Estimation is based on Newton’s

method. The predictors are absolute log-price changes (V OL), as proxy for intraday price volatility, and its squared version to capture potential nonlinear

effects (SQV OL). c denotes the constant in all models. The table presents the estimated coefficients (i.e., the log-odds) and standard errors in parenthesis.

For closing prices, we consider four models with different transaction types. [1]: Market buy-side, [2]: Market sell-side, [3]: Buy-side limit order executed, [4]:

Sell-side limit order executed. The bottom three rows in the table report the number of observations (Obs), χ2(2) with its rejection probability (in square

brackets), log-likelihood value (LL) and pseudo (McFadden’s) R2 values calculated as 1-[LL(full)/LL(baseline)]. The sample covers the periods from October

1, 2003 to May 14, 2004. *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Table 6: Logit model estimation results for price volatility: impact of trade size

[1] [2] [3] [4] [5]

c 0.011** -1.454*** -3.904*** -6.456*** -7.893***
(0.005) (0.006) (0.017) (0.058) (0.119)

SIZE 0.004*** 0.009*** 0.025*** 0.045** 0.041
(0.002) (0.002) (0.005) (0.019) (0.039)

Obs. 190195 190195 190195 190195 190195
χ2(1) 7.46 21.13 20.82 5.83 1.08

[0.01] [0.00] [0.00] [0.02] [0.30]
LL -131826 -92303 -18492 -2239 -630
R2 0.000 0.000 0.001 0.001 0.001

Notes: The table reports the logit model estimation results for volatility impact of trade size. The response variable

high volatility (yi) is yi = 1 if local volatility exceeds the threshold (k), and yi = 0 otherwise. Estimation is based

on Newton’s method and only for market buy-side. The predictor is the log-differences of trade size (SIZE) and c

denotes the constant. In model [1], high volatility threshold k is the median of sample volatility. In other specifications

(from [2] to [5]), the threshold is the k standard deviation above the mean value (i.e., k = 1, 3, 6, 9), respectively. The

bottom four rows in the table report the number of observations (Obs), χ2(2) with its rejection probability (in square

brackets), log-likelihood value (LL) and pseudo (McFadden’s) R2 values calculated as 1-[LL(full)/LL(baseline)].

The sample covers the periods from October 1, 2003 to May 14, 2004. *, **, and *** indicate statistical significance

at the 0.10, 0.05, and 0.01 levels, respectively.
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Table 7: Distributional characteristics of price-contingent trades and transactional prices

∆SLS ∆P ∆SLB ∆P ∆TPS ∆P ∆TPB ∆P

Panel A. Large orders

Obs. 20028 20028 17728 17728 14032 14032 9597 9597
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Std.Dev. 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Skewness 0.848 0.915 -2.953 -4.036 -4.958 -5.683 2.404 2.799

Excess Kurtosis 48.231 53.973 180.920 59.250 62.554 72.046 52.566 55.701

Minimum -0.018 -0.019 -0.024 -0.019 -0.019 -0.019 -0.019 -0.019
Maximum 0.009 0.010 0.024 0.005 0.007 0.004 0.016 0.016

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B. Small orders
Obs. 36980 36980 30599 30599 64381 64381 60154 60154

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Std.Dev. 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000
Skewness 0.983 1.259 -4.120 -4.796 -6.980 -10.498 1.385 2.758

Excess Kurtosis 78.165 87.766 68.496 78.866 228.900 288.090 332.050 171.620

Minimum -0.018 -0.018 -0.018 -0.018 -0.019 -0.019 -0.021 -0.018
Maximum 0.007 0.010 0.005 0.004 0.015 0.004 0.020 0.009

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: The table reports the sample moments computed on the log-differences of stop-loss and take-profit prices.
Panels A and B report the moments for the sample of large orders and small orders, respectively. The order size
cutoff is 5000. The sample covers the periods from October 1, 2003 to May 14, 2004. ∆SLS (∆SLB): log-differences
in stop-loss sell (buy) prices, ∆TPS (∆TPB): log-differences in take-profit sell (buy) prices. The sampling frequency
is tick-by-tick. “∆P” further denotes the log-differences in transaction market closing prices corresponding to each
transaction type (i.e., stop-loss or take-profit). All trades are closing values. Significant excess kurtosis values are
reported in bold.
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Figure 1: OANDA FXTrade trading. Notes: Top left: total trading frequency (number of trades) per trader
(trader ID). Top right: total trading volume (in the units of base currency - EUR) per trader (trader ID). Bottom
left: total trading frequency (number of trades) for each day of the week. Bottom right: total trading volume (in the
units of base currency - EUR) for each day of the week.
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